Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(35): 4671-4674, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591695

RESUMEN

Hydrophobic membranes infused with mixed solvents including a low polar solvent and a specific solvent can efficiently separate analytes from blood upon applying a voltage. In contrast, membranes infused with a specific solvent alone show significantly reduced separation efficiencies for blood samples. Infusion of a low polar solvent is of importance for achieving antifouling ability of membranes for biological sample pretreatment.


Asunto(s)
Incrustaciones Biológicas , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Solventes , Solventes/química , Incrustaciones Biológicas/prevención & control , Humanos , Animales
2.
J Sep Sci ; 47(3): e2300745, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356226

RESUMEN

Understanding and comparing the applicability of electromembrane extraction (EME) and liquid-phase microextraction (LPME) is crucial for selecting an appropriate microextraction approach. In this work, EME and LPME based on supported liquid membranes were compared using biological samples, including whole blood, urine, saliva, and liver tissue. After optimization, efficient EME and LPME of clozapine from four biological samples were achieved. EME provided higher recovery and faster mass transfer for blood and liver tissue than LPME. These advantages were attributed to the electric field disrupting clozapine binding to interfering substances. For urine and saliva, EME demonstrated similar recoveries while achieving faster mass transfer rates. Finally, efficient EME and LPME were validated and evaluated combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The coefficient of determination of all methods was greater than 0.999, and all methods showed acceptable reproducibility (≤14%), accuracy (90%-110%), and matrix effect (85%-112%). For liver and blood with high viscosity and complex matrices, EME-LC-MS/MS provided better sensitivity than LPME-LC-MS/MS. The above results indicated that both EME and LPME could be used to isolate non-polar basic drugs from different biological samples, although EME demonstrated higher recovery rates for liver tissue and blood.


Asunto(s)
Clozapina , Microextracción en Fase Líquida , Cromatografía Liquida , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Microextracción en Fase Líquida/métodos , Membranas Artificiales
3.
J Chromatogr A ; 1714: 464550, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38043167

RESUMEN

Molecularly imprinted polymers (MIPs) possess high specific cavities towards the template molecules, thus solid-phase extraction (SPE) based on MIPs using the target as the template has been widely used for selective extraction. However, the performance of SPE depends strongly on the shape and the distribution of the MIP sorbents, and rapid synthesis of MIPs with uniform particles remains a challenge. Our previous studies have shown that reflux precipitation polymerization (RPP) was a simple and rapid method for the synthesis of uniform MIPs. However, synthesis of MIPs by RPP for a group of targets using only one of the targets as the template has rarely been reported. In this work, MIPs with specific recognition capability for a group of quinolone antibiotics were synthesized for the first time via RPP with only ofloxacin as the template. The synthesized MIPs displayed good adsorption performance and selectivity (IF > 3.5) towards five quinolones, and subsequently were used as SPE adsorbents. Based on this MIPs-SPE, after systematic optimization of the SPE operation parameters during loading, washing and elution, an efficient and sensitive enough SPE method for separation and enrichment of the five quinolones in urine was developed and evaluated in combination with LC-MS/MS. The results showed that MIPs-SPE-LC-MS/MS has a good correlation (R2 ≥ 0.9961) in the linear range of 1-500 µg L-1. The limit of detection (LOD) and limit of quantification (LOQ) for the five quinolones were 0.10-0.14 µg L-1 and 0.32-0.48 µg L-1, respectively. In addition, the proposed method demonstrated good reproducibility (≤ 13 %) and high accuracy (92 %-113 %). We are confident that this method holds significant promise for the analysis of quinolones within the contexts of forensic medicine, epidemiology, and environmental chemistry.


Asunto(s)
Impresión Molecular , Quinolonas , Polímeros Impresos Molecularmente , Cromatografía Liquida , Polimerizacion , Reproducibilidad de los Resultados , Impresión Molecular/métodos , Polímeros/química , Espectrometría de Masas en Tándem , Extracción en Fase Sólida/métodos , Antibacterianos , Adsorción
4.
Mikrochim Acta ; 190(4): 151, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952093

RESUMEN

The development of molecularly imprinted monolith (MIM) for pipette-tip solid-phase extraction (PT-SPE) for sample pretreatment is challenging . In this work, a wax-based molecularly imprinted monolith (WMIM) was successfully prepared with a hybrid method by integration of the traditional packing SPE column and MIM, including preparation of the salt column inside the pipette, polymerization of wax-based imprinted column (WIC) outside the pipette, and immobilization of WIC inside the pipette tip. To ensure the penetration of samples and solvents during the PT-SPE, micrometer-range interconnected macropores were tailor-made via the salt-template sacrifice method. For the production of high affinity imprinted sites within the WIC, octadecanoic acid was used as functional monomer in the paraffin matrix. In terms of the adsorption property, the synthesized WIC exhibited a specific affinity to cardiovascular drugs, with an imprinting factor (IF) of 4.8 for the target analyte. Moreover, the WMIM-based PT-SPE was coupled with fluorescence spectrophotometry for the target propranolol determination  (the excitation and emission wavelengths were 294 nm and 343 nm, respectively). This analytical method showed high recovery of target detection in different real samples (R > 90%), good sensitivity, and accuracy (R2 = 0.99, LOD = 0.03 ng mL-1). We believe this work could provide a significant contribution  for the fabrication of MIM and promote an emerging trend of developing elution-free materials for sample pretreatment.


Asunto(s)
Impresión Molecular , Impresión Molecular/métodos , Polímeros , Cromatografía Líquida de Alta Presión , Extracción en Fase Sólida/métodos , Solventes
5.
J Chromatogr A ; 1688: 463738, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36574747

RESUMEN

Determination of amphetamine-type drugs (ATSs) in urine and wastewater is a simplified approach for the widespread monitoring of ATSs abuse. To improve the sensitivity of the analytical methods, molecularly imprinted polymers (MIPs) based solid-phase extraction (SPE) pretreatment attracted great attention in this field. Generally, smaller particle sizes and more uniform morphology of the MIPs could provide higher detection sensitivity. Our previous works showed reflux precipitation polymerization (RPP) is a method for synthesizing monodispersed MIPs with small particle size. However, synthesis of uniform spherical MIPs towards a group of targets has never been reported. Therefore, in the present work, MIPs towards a group of ATSs were synthesized via RPP with a pseudo template for the first time. After screening potential pseudo-templates, N-methylphenylethylamine (MPEA) was selected as the optimal pseudo-template. MPEA-MIPs were characterized by scanning electron microscope (SEM), FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS) spectra. Adsorption isotherms, adsorption kinetics and selectivity were evaluated, and the experimental results indicated that the MPEA-MIPs possessed good selectivity and adsorption property towards ATSs. After optimization of the MIP-SPE procedure, the MIP-SPE cartridges were then coupled with liquid chromatography and tandem mass spectrometry (LC-MS/MS) for determination of ATSs. The evaluation results showed that MIP-SPE-LC-MS/MS displayed good linearity (R2 >0.991) in the linear range (1.0-50.0 µg/L for urine and 0.5-50.0 µg/L for wastewater), and low matrix effect (85-112%). The limit of detection (LOD) was 0.05 -0.29 µg/L, and the accuracy (85-115%) and repeatability (RSD ≤ 15%) were satisfactory at low, medium and high concentrations. To the best of our knowledge, this is the first time that dummy MIPs towards a group of ATSs were synthesized by RPP polymerization, which showed great potential for the detection of ATSs in urine and wastewater.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Impresión Molecular , Anfetamina , Cromatografía Liquida , Polímeros Impresos Molecularmente , Aguas Residuales , Polimerizacion , Espectroscopía Infrarroja por Transformada de Fourier , Polímeros/química , Espectrometría de Masas en Tándem/métodos , Extracción en Fase Sólida/métodos , Impresión Molecular/métodos , Adsorción , Cromatografía Líquida de Alta Presión/métodos
6.
J Hazard Mater ; 443(Pt B): 130254, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36356522

RESUMEN

Antibiotic resistance has been a worsening global concern and selective elimination of antibiotic-resistant bacteria (ARB) while retaining the co-existed beneficial bacteria has been essential in environmental protection, which having attracted considerable interest. In this work, by integrating the whole cell imprinting and epitope imprinting strategy, magnetic bacterial imprinted polymers (BIPs) towards ARB were synthesized with interfacial biomimetic mineralization followed by a screening process. The binding data showed that the BIPs owned highly specific affinity towards the target bacteria. Taking advantage of this specific binding ability of BIPs, a two-step selective antimicrobial approach was developed. Remarkably, the BIP nanoantibiotics (nAbts) could efficiently destroy ARB without harming the beneficial bacteria. In comparison with the non-bacterial imprinted polymers, the biocompatible BIP nAbts showed a 12.5-fold increase in the survival percentage for the beneficial bacteria in wastewater. To the best of our knowledge, this is the first time that bacterial imprinting via interfacial biomimetic mineralization was developed, and also the first report of killing ARB without harming the beneficial bacteria in wastewater. We believe that this strategy provides a new insight into the design of novel affinity materials for the selective elimination of ARB in biological treatment for environmental protection.


Asunto(s)
Biomimética , Aguas Residuales , Aguas Residuales/microbiología , Antagonistas de Receptores de Angiotensina , Antibacterianos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias , Polímeros
7.
Talanta ; 254: 124167, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493567

RESUMEN

Outbreaks of emerging viral respiratory infectious diseases (VRIDs) including coronavirus disease 2019 (COVID-19) seriously endanger people's health. However, the traditional nucleic acid detection required professionals and larger instruments and antigen-antibody detection suffered a long window period of target generation. To facilitate the VRIDs detection in time for common populations, a smartphone-controlled biosensor, which integrated sample preparation (electromembrane extraction), biomarker detection (red-green-blue model) and remote response technology (a built-in APP), was developed in this work. With the intelligent biosensor, VRIDs could be recognized in the early stage by using endogenous hydrogen sulfide as the biomarker. Importantly, it only took 15 min to accomplish the whole process of screening and response to VRIDs. Moreover, the experimental data showed that this smartphone-controlled biosensor was suitable for ordinary residents and could successfully differentiate non-communicable respiratory diseases from VRIDs. To the best of our knowledge, this is the first time that a smartphone-controlled biosensor for screening and response to VRIDs was reported. We believe that the present biosensor will help ordinary residents jointly deal with the challenges brought by COVID-19 or other VRIDs in the future.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Enfermedades Transmisibles , Humanos , Teléfono Inteligente , COVID-19/diagnóstico , COVID-19/epidemiología , Anticuerpos
8.
Mikrochim Acta ; 189(9): 324, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939150

RESUMEN

An electromembrane microextraction (EME)-assisted fluorescent molecularly imprinted polymer (MIP) sensing method is presented for detecting the total cathinone drugs in urine samples. In this detection system, the clean-up ability of EME eliminated the matrix effects on both target binding with MIPs and the luminescence of the fluorophore in the sensor. Moreover, by optimizing the extraction conditions of EME, different cathinone drugs with a same concentration show a same response on the single aggregation induced emission (AIE) based MIP (AIE-MIP) sensor (λex = 360 nm, λem = 467 nm). The recoveries were 57.9% for cathinone (CAT) and 78.2% for methcathinone (MCAT). The EME-assisted "light-up" AIE-MIP sensing method displayed excellent performance with a linear range of 2.0-12.0 µmol L-1 and a linear determination coefficient (R2) of 0.99. The limit of detection (LOD) value for EME-assisted "light-up" AIE-MIP sensing method was 0.3 µmol L-1. The relative standard deviation (RSD) values for the detection were found to be within the range 2.0-12.0%. To the best of our knowledge, this is the first time that determination of total illicit drugs with a single fluorescent MIP sensor was achieved and also the first utilization of sample preparation to tune the sensing signal of the sensor to be reported. We believe that this versatile combination of fluorescent MIP sensor and sample preparation can be used as a common protocol for sensing the total amount of a group of analytes in various fields.


Asunto(s)
Alcaloides , Impresión Molecular , Colorantes , Límite de Detección , Impresión Molecular/métodos , Polímeros
9.
Chemosphere ; 304: 135350, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35714963

RESUMEN

Pharmaceuticals in hospital effluents, often discharged into the public sewage network without sufficient treatment, have shown negative impacts to the human health and aquatic environment. However, the conventional adsorbents used to remove these micropollutants had several deficiencies, including slow uptake kinetics and poor selectivity. To overcome these challenges, water-compatible Janus MIP particles (J-MIPs) with mouth-like openings were synthesized using seeded interfacial polymerization in this work. Among the series of J-MIPs, the selected J-MIP3 showed fast binding kinetics (∼40 s) towards the target pollutant. The theoretical and instrumental analysis suggested that the electrostatic interaction, hydrogen bond and hydrophobic reaction constituted the dominant mechanism for J-MIP3's recognition of target pharmaceutical. Selectivity and robustness tests indicated that the synthetic method was promising in practical application. Finally, the feasibility of the J-MIP3 fixed-bed column in the rapid removal of propranolol (PRO) from hospital effluents was successfully demonstrated. Compared to the activated carbon fixed-bed column, the J-MIP3 fixed-bed column showed at least 7-fold enhancement in its treatment efficiency. To the best of our knowledge, this is the first time that the accelerated mass transfer and fast removal of the pharmaceutical from wastewater have been achieved by the synthetic receptor with asymmetric structure. We believe the present study will open new avenues for the development of multi-functional molecularly imprinted polymers as well as Janus materials in environmental science.


Asunto(s)
Impresión Molecular , Hospitales , Humanos , Impresión Molecular/métodos , Boca , Preparaciones Farmacéuticas , Polímeros/química , Agua/química
10.
Talanta ; 246: 123485, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35462249

RESUMEN

Coextraction of different groups of analytes is vital for saving sample volumes and simplifying analytical procedures in bioanalysis. Conventionally, coextraction was achieved by using multi-extraction systems with different supported liquid membranes (SLMs). However, the different membrane solvents tended to diffuse into the aqueous solutions and the other SLM to reach distribution equilibrium during extraction process, causing the system instability. In this work, a stable multi-extraction system (integration of liquid-phase microextraction and electromembrane extraction, LPME/EME) based on the identical supported semi-liquid membrane (SsLM) was developed. Principally, the state of distribution equilibrium of the membrane solvent (polypropylene glycol with molecular weight 4000) in SsLM could be reached at the beginning of extraction, which enhanced the coextraction stability. With this multi-extraction system, acidic and basic analytes were simultaneously extracted from practical biological samples. The extraction recoveries of the six model drugs in undiluted urine samples were over 70%. Followed by LC-MS/MS, the limits of quantification (LOQs) were in the range of 5-10 ng mL-1. The multi-extraction system using the identical SsLM in this study shows promising potential in construction of other stable multi-extraction systems (e.g., LPME/LPME and EME/EME) in the future, which will greatly benefit the group separation of analytes in complicated biological samples.


Asunto(s)
Microextracción en Fase Líquida , Espectrometría de Masas en Tándem , Cromatografía Liquida , Membranas Artificiales , Solventes
11.
Biosens Bioelectron ; 205: 114113, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35219945

RESUMEN

Development of a specific "light-up" sensor for detection of psychoactive drug has been a great challenge in forensic analysis. To achieve this goal, an aggregation induced emission (AIE) functional monomer containing both phenylboronic group and double bond was synthesized for construction of molecularly imprinted polymers (MIPs) based fluorescent sensor. In this AIE-MIP sensor, the AIE fluorophore could vibrate freely in the absence of the target analyte (cathinone, CAT), while this vibration was restricted after the specific molecular recognition, leading to "light-up" character of the corresponding sensor. FT-IR and LC-MS characterizations proved the AIE monomer was successfully introduced onto AIE-MIPs. SEM analysis indicated the AIE-MIPs was ∼140 nm in diameter. Binding experiments indicated the AIE-MIPs owned high specificity towards CAT. Fluorescent studies confirmed that the "light-up" capability of the AIE-MIPs was highly selective. On this basis, the AIE-MIP sensor was applied in detecting CAT in forensic samples. The sensor reached a detection limit of 0.32 µmol L-1 and exhibited a linear range of 2-12 µmol L-1. Compared to previously reported MIPs based electrochemical sensors and fluorescent sensors for measurement of CAT drug and its analogue, the present AIE-MIP sensor showed much higher sensitivity. To the best of our knowledge, this is the first time that an AIE functional monomer was synthesized for molecular imprinting, and also the first "light-up" AIE-MIP sensor to be reported. We believe that this versatile design of the specific "light-up" sensor can be used as a general protocol for construction of advanced sensor in various fields.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Impresión Molecular/métodos , Polímeros Impresos Molecularmente , Espectroscopía Infrarroja por Transformada de Fourier
12.
Anal Chim Acta ; 1192: 339335, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35057942

RESUMEN

Practical biological and environmental samples always contain both acidic and basic substances, and the samples are always precious. Thus, separation of analytes with different nature from the same sample was of great significance. Successive liquid phase microextraction (sLPME) of acidic and basic analytes under optimal extraction conditions was therefore proposed for the first time. The concept of sLPME was proved by using three acidic analytes (naproxen, flurbiprofen and diclofenac) and three basic analytes (haloperidol, fluoxetine and sertraline) as model analytes, and using polypropylene glycol with an average molecular weight of 4000 (PPG4000) as SLM. The recoveries of all target analytes by sLPME were similar to that by individual LPME due to good affinity of PPG4000 to both acidic and basic analytes. Under optimal extraction conditions, the recoveries for all analytes by sLPME from urine samples were in the range of 62%-95%. Moreover, combined with LC-MS/MS, such sLPME approach was also evaluated with urine samples. The matrix effect of sLPME-LC-MS/MS at different levels for all analytes ranged from -14.1%-13.2%. The linear ranges with R2 > 0.996 were 5-1000 ng mL-1 for basic analytes, and 20-1000 ng mL-1 for acidic analytes except diclofenac (1-1000 ng mL-1). The repeatability and accuracy at four levels were in the range of 3%-10% and 86%-120%, respectively. The limit of detection (LOD, S/N = 3) and limit of quantification (LOQ, S/N = 10) were found to be 0.07-0.49 ng mL-1 and 0.25-1.63 ng mL-1, respectively. Finally, the strategy for constructing a sLPME system was further confirmed with urine, plasma and saliva using another two versatile SLM solvents possessing high affinity to both acidic and basic analytes. Successive LPME enabled separation of acidic and basic analytes from the same sample under optimum extraction conditions for all target analytes. Thus, we believe that the sLPME system will become a potent platform for forensic toxicology analysis, food science, environmental analysis and epidemiology study.


Asunto(s)
Microextracción en Fase Líquida , Cromatografía Liquida , Naproxeno , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
13.
J Chromatogr A ; 1661: 462684, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34875518

RESUMEN

To concentrate trace level of analytes in complex wastewater, sample preparation is necessary prior to instrumental analysis. In this work, an enrichment bag-based liquid-phase microextraction (EB-LPME) system was therefore proposed for the first time to isolate and enrich the illicit drugs (amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), ketamine, codeine and fentanyl) from wastewater. Under the optimum EB-LPME conditions, the recoveries of the model illicit drugs were 40-93% with enrichment factors up to 93. The optimized EB-LPME was compared to hollow fiber-LPME (HF-LPME) in terms of the thickness of the supported liquid membrane (SLM), the effective SLM area, extraction recovery and mass transfer flux. Compared with HF-LPME, EB-LPME possesses larger effective SLM area, and provided higher extraction recovery. In addition, EB-LPME provided larger mass transfer flux than HF-LPME, which was mainly due to the differences in SLM thickness. Therefore, SLM thickness was identified as the main mass transfer flux-determining factor experimentally. The matrix effect of EB-LPME was evaluated using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and excellent sample clean-up was confirmed. Subsequently, EB-LPME-LC-MS/MS was validated with satisfactory results, and the detection of limit of the proposed method was in the range of 0.3-8.7 ng/L. Finally, with standard addition method, EB-LPME-LC-MS/MS was successfully applied for the determination of the model drugs in a local hospital wastewater from Wuhan, China. This study clearly showed that EB-LPME displayed great potential as an efficient sample preparation method for isolation and enrichment of the drugs/pollutants from complex environmental samples for wastewater-based epidemiology in the near future.


Asunto(s)
Monitoreo del Ambiente/métodos , Drogas Ilícitas , Aguas Residuales/análisis , Cromatografía Liquida , Drogas Ilícitas/análisis , Microextracción en Fase Líquida , Espectrometría de Masas en Tándem
14.
Talanta ; 240: 123175, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972062

RESUMEN

In this work, the effect of sample matrix on electromembrane extraction (EME) was investigated for the first time using cathinones (log P < 1.0) as polar basic model analytes. Ten supported liquid membranes (SLMs) were tested for EME from spiked buffer solutions, urine, and whole blood samples, respectively. For buffer solutions, SLMs containing aromatic solvents provided higher EME recovery than non-aromatic solvents, which confirmed the significance of cation-π interactions for EME of basic substances. Interestingly, when applied to urine and whole blood samples, aromatic SLMs were less efficient, while non-aromatic SLMs containing abundant hydrogen-bond acidity/basicity were efficient. These observations were explained by SLM fouling, and the antifouling property of the SLM was clearly dependent on the nature of the SLM solvent. Accordingly, a binary SLM containing aromatic 1-ethyl-2-nitrobenzene (ENB) and non-aromatic 1-undecanol (1:1 v/v) was developed. This binary SLM was not prone to fouling, and provided high recoveries of cathinones from urine and whole blood. EME based on this SLM was optimized and evaluated in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS), and the linear ranges with R2 ≥ 0.9903 for cathinones in whole blood and urine were 5-200 ng/mL and 1-200 ng/mL, respectively. The LOD and LOQ of cathinones were ranged from 0.12 to 0.54 ng/mL and 0.38-1.78 ng/mL, respectively. The repeatability and accuracy bias at three levels were ≤11% and within 10%, respectively. In addition, the matrix effect ranged from 88% to 118% was also in compliance with guidelines for bioanalytical method validation provided by the European Medicines Agency.


Asunto(s)
Membranas Artificiales , Espectrometría de Masas en Tándem , Alcaloides , Cromatografía Liquida , Solventes
15.
Anal Chem ; 93(42): 14323-14333, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34648282

RESUMEN

Fluorescent aptamer beacons (FABs) are a major category of biosensors widely used in environmental analysis. However, due to their low compatibility, it is difficult to use the common FABs for biological samples. To overcome this challenge, construction of FABs with complex structures to adapt the nature of biological samples is currently in progress in this field. Unlike previous works, we moved our range of vision from the FAB itself to the biological sample. Inspired by this idea, in this work, flat membrane-based liquid-phase microextraction (FM-LPME) with sufficient sample cleanup and preconcentration capacities was integrated with FABs. With the merits of both FM-LPME and FABs, the integrated LPME-FAB system displayed a clear synergistic enhancement for target analysis. Specifically, LPME in the LPME-FAB system provided purified and enriched Hg2+ for the FAB recognition, while the FAB recognition event promoted the extraction efficiency of LPME. Due to superior performances, the LPME-FAB system achieved highly sensitive analysis of Hg2+ in urine samples with a detection limit of 27 nM and accuracies in the range of 98-113%. To the best of our knowledge, this is the first time that an integrated LPME-FAB system was constructed for target analysis in biological samples. We believe that this study will provide a new insight into the next generation of biosensors, where the integration of sample preparation with detection probes is as important as the design of complex probes in the field of bioanalysis.


Asunto(s)
Microextracción en Fase Líquida
16.
Anal Chim Acta ; 1184: 339038, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34625271

RESUMEN

Electromembrane extraction (EME), involving the migration of charged analytes across a supported liquid membrane (SLM) with an external power supply, is a promising sample preparation method in analytical chemistry. However, the presence of boundary double layers at the SLM/solution interfaces often restricts extraction efficiency. To avoid this, the current work proposed an ultrasound-assisted EME (UA-EME) method based on a novel type of supported semi-liquid membrane (SsLM). The characterizations showed that the SsLM was stable under ultrasound conditions. Ultrasound was found to reduce the boundary double layers and thus increase the mass transfer. Major operational parameters in UA-EME including ultrasound power density, temperature, applied voltage and extraction time were optimized with haloperidol, fluoxetine, and sertraline as model analytes. Under the optimal conditions, extraction recoveries of model analytes in water samples were in the range of 66.8%-91.6%. When this UA-EME method was coupled with LC-MS/MS for detection of the target analytes in human urine samples, the linear range of the analytical method was 10-1000 ng mL-1, with R2 > 0.997 for all analytes. The limits of detection (LOD) and limits of quantification (LOQ) were in the range of 1.7-2.1 ng mL-1 and 5.7-6.7 ng mL-1, respectively. The UA-EME expands the application field of ultrasound chemistry and will be very important in development of stable and fast sample preparation systems in the future.


Asunto(s)
Membranas Artificiales , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Límite de Detección , Soluciones
17.
J Pharm Biomed Anal ; 206: 114364, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34543943

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (FLU), sertraline (SER), paroxetine (PAR), fluvoxamine (FLV) and citalopram (CIT) have been the first treatment drugs for pregnant and breastfeeding women. Quantitative analysis of SSRIs in biological samples is extremely needed in public health and clinical practice. During the analysis, sample pretreatment is an important step that can obtain an accurate quantitative analysis of SSRIs in the complex samples. The present paper discussed the recent development of sample preparation methods for SSRI analysis. Traditional sample preparation techniques such as liquid liquid extraction (LLE) and solid phase extraction (SPE), which have been widely used in the separation of SSRIs in biological samples, were extensively presented. Moreover, the new sample preparation techniques including liquid phase microextraction (LPME), solid phase microextraction (SPME), electromembrane extraction (EME) and other miniaturized extraction techniques, which are becoming highly popular in SSRI analysis, were also critically reviewed. In this review, both the advantages and disadvantages of these sample pretreatment methods were addressed. As a summary, we prospected the challenges and promising directions for the future of sample pretreatment methods in SSRI analysis.


Asunto(s)
Citalopram , Inhibidores Selectivos de la Recaptación de Serotonina , Fluoxetina , Fluvoxamina , Humanos , Paroxetina
18.
Anal Chem ; 93(33): 11488-11496, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34383461

RESUMEN

Polymerase chain reaction (PCR) technology has become the cornerstone of DNA analysis. However, special samples (e.g., forensic samples, soil, food, and mineral medicine) may contain powerful PCR inhibitors. High levels of inhibitors can hardly be sufficiently removed by conventional DNA extraction approaches and may result in the complete failure of PCR. In this work, the removal of PCR inhibitors by electromembrane extraction (EME) was investigated for the first time. To demonstrate the universality of the approach, EME formats with and without supported membranes (termed parallel-EME and µ-EME, respectively) were employed, and both anionic [humic acid (HA)] and cationic (Ca2+) PCR inhibitors were used as models. During EME, charged inhibitors in the sample migrate into the liquid membrane in the presence of an electric field and might further leech into the waste solution, while PCR analytes remain in the sample. After EME, the clearance values for HA at 0.2 and 2.5 mg mL-1 were 94 and 85%, respectively, and that for Ca2+ (275 mM) was 63%. Forensic PCR-short tandem repeat (PCR-STR) genotyping showed that EME significantly reduced the interference by HA in PCR-STR analysis and displayed a higher HA purge capability compared to existing methods. Furthermore, by combining EME with liquid-liquid extraction or solid-phase extraction, satisfactory STR profiles were obtained from HA-rich blood samples. In addition, false-negative reports of bacterial detection in mineral medicine and shrimps were avoided after the removal of Ca2+ by µ-EME. Our research demonstrates the great potential of EME for the purification of DNA samples containing high-level PCR inhibitors and opens up a new application direction for EME.


Asunto(s)
Electricidad , Membranas Artificiales , Aniones , Cationes , Reacción en Cadena de la Polimerasa
19.
Anal Chim Acta ; 1155: 238119, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33766314

RESUMEN

Forensic science requires a fast, sensitive, and anti-interfering imaging tool for on-site investigation and bio-analysis. The aggregation-induced emission (AIE) phenomenon exhibits remarkable luminescence properties (large Stokes shift, diverse molecular structures, and high photo-stability), which can provide a viable solution for on-site analysis, while at the same time overcoming the problem of aggregation-caused quenching (ACQ). Based on the outstanding performance in chemical analysis and bio-sensing, AIE materials have great prospects in the field of forensic science. Therefore, the application of AIE in forensic science has been summarized for the first time in this article. After a brief introduction to the concept and development of AIE, its applications in the determination of toxic or hazardous substances, based on data on poisoning deaths, has been summarized. Subsequently, besides the bio-imaging function, other applications of AIE in analyzing markers related to forensic genetics, forensic pathology, (focusing on the corpse) and clinical forensics (focusing on the living) have been discussed. In addition, applications of AIE molecules in criminal investigations, including recognition of fingerprints and blood stains, detection of explosives and chemical warfare agents, and anti-counterfeiting have also been presented. It is hoped that this review will light up the future of forensic science by stimulating more research work on the suitability of AIE materials in advancing forensic science.


Asunto(s)
Colorantes Fluorescentes , Luminiscencia , Ciencias Forenses , Estructura Molecular
20.
Anal Chim Acta ; 1129: 118-125, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32891380

RESUMEN

In this fundamental work, tributyl phosphate (TBP) with zero hydrogen-bond acidity was for the first time discovered as an efficient supported liquid membrane (SLM) for EMEof acidic drugs (barbiturates) due to its high polarity-polarizability. This discovery indicated that strong dipole-dipole interaction induced by high polarity-polarizability played an important role for efficient EME of acidic drugs. In addition, three barbiturates were successfully extracted for the first time from human whole blood and urine samples by EME with recoveries up to 90%. Interestingly, efficient EME of barbiturates from biological samples required much lower extraction voltage than that from buffer samples. This was due to the significant contribution from LPME during the EME process, when EME was conducted from the samples with just partially ionized analytes. EME combined with HPLC-UV and LC-MS were validated using whole blood and urine, respectively. In all cases, the linearity (R2) was >0.99 within the reported linear range. Repeatability at three concentrations was satisfactory (<12%), and the limits of detection (LOD, S/N = 3) were in the ranges of 0.44-4.30 ng mL-1 and 0.14-0.69 µg mL-1 for EME-LC-MS and EME-HPLC-UV, respectively. Finally, the validated methods were successfully applied for the identification and quantification of barbiturates in whole blood and urine samples for a forensic case, indicating that EME could be used in routine toxicological analysis. Thus, we believe that EME has great potential as a green, efficient and alternative sample preparation method not only in the field of analytical chemistry but also in the fields of forensic science and clinical medicine.


Asunto(s)
Barbitúricos , Membranas Artificiales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Humanos , Organofosfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...